2.1 Exercises

In Exercises 1-6, state the domain and range of the given relation.

1. \(R = \{(1,3), (2,4), (3,4)\} \)

2. \(R = \{(1,3), (2,4), (2,5)\} \)

3. \(R = \{(1,4), (2,5), (2,6)\} \)

4. \(R = \{(1,5), (2,4), (3,6)\} \)

5. In Exercises 7-12, create a mapping diagram for the given relation and state whether or not it is a function.

7. The relation in Exercise 1.

8. The relation in Exercise 2.

11. The relation in Exercise 5.

13. Given that \(g \) takes a real number and doubles it, then \(g : x \rightarrow ? \).

14. Given that \(f \) takes a real number and divides it by 3, then \(f : x \rightarrow ? \).

15. Given that \(g \) takes a real number and adds 3 to it, then \(g : x \rightarrow ? \).

16. Given that \(h \) takes a real number and subtracts 4 from it, then \(h : x \rightarrow ? \).

17. Given that \(g \) takes a real number, doubles it, then adds 5, then \(g : x \rightarrow ? \).

18. Given that \(h \) takes a real number, subtracts 3 from it, then divides the result by 4, then \(h : x \rightarrow ? \).

19. Given that the function \(f \) is defined by the rule \(f : x \rightarrow 3x - 5 \), determine where the input number is mapped in Exercises 19-22.

20. \(f : 3 \rightarrow ? \)

1 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
Given that the function f is defined by the rule $f : x \rightarrow 4 - 5x$, determine where the input number is mapped in Exercises 23-26.

23. $f : 2 \rightarrow ?$
24. $f : -3 \rightarrow ?$
25. $f : a \rightarrow ?$
26. $f : 2a + 11 \rightarrow ?$

Given that the function f is defined by the rule $f : x \rightarrow x^2 - 4x - 6$, determine where the input number is mapped in Exercises 27-30.

27. $f : 1 \rightarrow ?$
28. $f : -2 \rightarrow ?$
29. $f : -1 \rightarrow ?$
30. $f : a \rightarrow ?$

Given that the function f is defined by the rule $f : x \rightarrow 3x - 9$, determine where the input number is mapped in Exercises 31-34.

31. $f : a \rightarrow ?$
32. $f : a + 1 \rightarrow ?$
33. $f : 2a - 5 \rightarrow ?$
34. $f : a + h \rightarrow ?$

Given that the functions f and g are defined by the rules $f : x \rightarrow 2x + 3$ and $g : x \rightarrow 4 - x$, determine where the input number is mapped in Exercises 35-38.

35. $f : 2 \rightarrow ?$
36. $g : 2 \rightarrow ?$
37. $f : a + 1 \rightarrow ?$
38. $g : a - 3 \rightarrow ?$

39. Given that g takes a real number and triples it, then $g(x) = ?$.

40. Given that f takes a real number and divides it by 5, then $f(x) = ?$.

41. Given that g takes a real number and subtracts it from 10, then $g(x) = ?$.

42. Given that f takes a real number, multiplies it by 5 and then adds 4 to the result, then $f(x) = ?$.

43. Given that f takes a real number, doubles it, then subtracts the result from 11, then $f(x) = ?$.

44. Given that h takes a real number, doubles it, adds 5, then takes the square root of the result, then $h(x) = ?$.

In Exercises 45-54, evaluate the given function at the given value b.

45. $f(x) = 12x + 2$ for $b = 6$.
46. $f(x) = -11x - 4$ for $b = -3$.
47. $f(x) = -9x - 1$ for $b = -5$.
48. $f(x) = 11x + 4$ for $b = -4$.
49. \(f(x) = 4 \) for \(b = -12 \).
50. \(f(x) = 7 \) for \(b = -7 \).
51. \(f(x) = 0 \) for \(b = -7 \).
52. \(f(x) = 12x + 8 \) for \(b = -3 \).
53. \(f(x) = -9x + 3 \) for \(b = -1 \).
54. \(f(x) = 6x - 3 \) for \(b = 3 \).

In Exercises 55-58, given that the function \(f \) is defined by the rule \(f(x) = 2x + 7 \), determine where the input number is mapped.

55. \(f(a) = ? \)
56. \(f(a + 1) = ? \)
57. \(f(3a - 2) = ? \)
58. \(f(a + h) = ? \)

In Exercises 59-62, given that the function \(g \) is defined by the rule \(g(x) = 3 - 2x \), determine where the input number is mapped.

59. \(g(a) = ? \)
60. \(g(a + 3) = ? \)
61. \(g(2 - 5a) = ? \)
62. \(g(a + h) = ? \)

Given that the functions \(f \) and \(g \) are defined by the rules \(f(x) = 1 - x \) and \(g(x) = 2x + 13 \), determine where the input number is mapped in Exercises 63-66.

63. \(f(a) = ? \)

64. \(g(a) = ? \)
65. \(f(a + 3) = ? \)
66. \(g(4 - a) = ? \)

Given that the functions \(f \) and \(g \) are defined by the rules \(f(x) = 3x + 4 \) and \(g(x) = 2x - 5 \), determine where the input number is mapped in Exercises 67-70.

67. \(f(g(2)) = ? \)
68. \(g(f(2)) = ? \)
69. \(f(g(a)) = ? \)
70. \(g(f(a)) = ? \)

Given that the functions \(f \) and \(g \) are defined by the rules \(f(x) = 2x - 9 \) and \(g(x) = 11 \), determine where the input number is mapped in Exercises 71-74.

71. \(f(g(2)) = ? \)
72. \(g(f(2)) = ? \)
73. \(f(g(a)) = ? \)
74. \(g(f(a)) = ? \)

Use set-builder notation to describe the domain of each of the functions defined in Exercises 75-78.

75. \(f(x) = \frac{93}{x + 98} \)
76. \(f(x) = \frac{54}{x + 65} \)
77. \(f(x) = \frac{-87}{x - 88} \)
78. \(f(x) = -\frac{30}{x - 52} \)

Version: Fall 2007
Use set-builder and interval notation to describe the domain of the functions defined in Exercises 79-82.

79. \(f(x) = \sqrt{x} + 69 \)

80. \(f(x) = \sqrt{x} + 62 \)

81. \(f(x) = \sqrt{x} - 81 \)

82. \(f(x) = \sqrt{x} - 98 \)

Two integers are said to be relatively prime if their greatest common divisor is 1. For example, the greatest common divisor of 6 and 35 is 1, so 6 and 35 are relatively prime. On the other hand, the greatest common divisor of 14 and 21 is not 1 (it is 7), so 14 and 21 are not relatively prime. The Euler \(\phi \)-function is defined as follows:

- If \(n = 1 \), then \(\phi(n) = 1 \).
- If \(n > 1 \), then \(\phi(n) \) is the number of positive integers less than \(n \) that are relatively prime to \(n \). In Exercises 83-84, evaluate the Euler \(\phi \)-function at the given input.

83. \(\phi(12) \)

84. \(\phi(36) \)
2.1 Answers

1. Domain = \{1, 2, 3\}, Range = \{3, 4\}

3. Domain = \{1, 2\}, Range = \{4, 5, 6\}

5. Domain = \{1, 2, 3\}, Range = \{1, 2, 3, 4\}

7. \[R \\
 1 \rightarrow 3 \\
 2 \rightarrow 4 \\
 3 \\
\]

Not a function.

9. \[R \\
 1 \rightarrow 4 \\
 2 \rightarrow 5 \\
 3 \rightarrow 6 \\
\]

Not a function.

11. \[R \\
 1 \rightarrow 1 \\
 2 \rightarrow 2 \\
 3 \rightarrow 3 \\
 4 \\
\]

Not a function.

13. \(g : x \rightarrow 2x \)

15. \(g : x \rightarrow x + 3 \)

17. \(g : x \rightarrow 2x + 5 \)

19. \(f : 3 \rightarrow 4 \)

21. \(f : a \rightarrow 3a - 5 \)

23. \(f : 2 \rightarrow -6 \)

25. \(f : a \rightarrow 4 - 5a \)

27. \(f : 1 \rightarrow -9 \)

29. \(f : -1 \rightarrow -1 \)

31. \(f : a \rightarrow 3a - 9 \)

33. \(f : 2a - 5 \rightarrow 6a - 24 \)

35. \(f : 2 \rightarrow 7 \)

37. \(f : a + 1 \rightarrow 2a + 5 \)

39. \(g(x) = 3x \)

41. \(g(x) = 10 - x \)

43. \(f(x) = 11 - 2x \)

45. 74

47. 44

49. 4

51. 0

53. 12

55. \(f(a) = 2a + 7 \)

57. \(f(3a - 2) = 6a + 3 \)

59. \(g(a) = 3 - 2a \)

61. \(g(2 - 5a) = 10a - 1 \)

63. \(f(a) = 1 - a \)

65. \(f(a + 3) = -a - 2 \)
67. \(f(g(2)) = 1 \)
69. \(f(g(a)) = 6a - 11 \)
71. \(f(g(2)) = 13 \)
73. \(f(g(a)) = 13 \)
75. Domain = \{x : x \neq -98\}
77. Domain = \{x : x \neq 88\}
79. Domain = \([-69, \infty) = \{x : x \geq -69\}\)
81. Domain = \([81, \infty) = \{x : x \geq 81\}\)
83. \(\phi(12) = 4 \)
2.2 Exercises

Perform each of the following tasks for the functions defined by the equations in Exercises 1-8.

i. Set up a table of points that satisfy the given equation. Please place this table of points next to your graph on your graph paper.

ii. Set up a coordinate system on a sheet of graph paper. Label and scale each axis, then plot each of the points from your table on your coordinate system.

iii. If you are confident that you “see” the shape of the graph, make a “leap of faith” and plot all pairs that satisfy the given equation by drawing a smooth curve (free-hand) on your coordinate system that contains all previously plotted points (use a ruler only if the graph of the equation is a line). If you are not confident that you “see” the shape of the graph, then add more points to your table, plot them on your coordinate system, and see if this helps. Continue this process until you “see” the shape of the graph and can fill in the rest of the points that satisfy the equation by drawing a smooth curve (or line) on your coordinate system.

1. \(f(x) = 2x + 1 \)
2. \(f(x) = 1 - x \)
3. \(f(x) = 3 - \frac{1}{2}x \)
4. \(f(x) = -1 + \frac{1}{2}x \)
5. \(f(x) = x^2 - 2 \)
6. \(f(x) = 4 - x^2 \)

7. \(f(x) = \frac{1}{2}x^2 - 6 \)
8. \(f(x) = 8 - \frac{1}{2}x^2 \)

Perform each of the following tasks for the functions Exercises 9-10.

i. Set up a coordinate system on a sheet of graph paper. Label and scale each axis.

ii. Use the table feature of your graphing calculator to evaluate the function at the given values of \(x \). Record these results in a table next to your coordinate system on your graph paper.

iii. Plot the points in the table on your coordinate system then use them to draw the graph of the given function. Label the graph with its equation.

9. \(f(x) = \sqrt{x - 4} \) at \(x = 4, 5, 6, 7, 8, 9, \) and 10.

10. \(f(x) = \sqrt{4 - x} \) at \(x = -10, -8, -6, -4, -2, 0, 2, \) and 4.

In Exercises 11-14, the graph of the given function is a parabola, a graph that has a “U-shape.” A parabola has only one turning point. For each exercise, perform the following tasks.

i. Load the equation into the \(Y= \) menu of your graphing calculator. Adjust the WINDOW parameters so that the “turning point” (actually called the vertex) is visible in the viewing window.

ii. Make a reasonable copy of the image in the viewing window on your home-
work paper. Draw all lines with a ruler (including the axes), but draw curves freehand. Label and scale each axis with xmin, xmax, ymin, and ymax. Label the graph with its equation.

11. \(f(x) = x^2 - x - 30 \)
12. \(f(x) = 24 - 2x - x^2 \)
13. \(f(x) = 11 + 10x - x^2 \)
14. \(f(x) = x^2 + 11x - 12 \)

Each of the equations in Exercises 15-18 are called “cubic polynomials.” Each equation has been carefully chosen so that its graph has exactly two “turning points.” For each exercise, perform each of the following tasks.

i. Load the equation into the Y= menu of your graphing calculator and adjust the WINDOW parameters so that both “turning points” are visible in the viewing window.

ii. Make a reasonable copy of the graph in the viewing window on your homework paper. Label and scale each axis with xmin, xmax, ymin, and ymax, then label the graph with its equation. Remember to draw all lines with a ruler.

15. \(f(x) = x^3 - 2x^2 - 29x + 30 \)
16. \(f(x) = -x^3 + 2x^2 + 19x - 20 \)
17. \(f(x) = x^3 + 8x^2 - 53x - 60 \)
18. \(f(x) = -x^3 + 16x^2 - 43x - 60 \)

Perform each of the following tasks for the equations in Exercises 19-22.

i. Load the equation into the Y= menu. Adjust the WINDOW parameters until you think all important behavior (“turning points,” etc.) is visible in the viewing window. Note: This is more difficult than it sounds, particularly when we have no advance notion of what the graph might look like. However, experiment with several settings until you “discover” the settings that exhibit the most important behavior.

ii. Copy the image on the screen onto your homework paper. Label and scale each axis with xmin, xmax, ymin, and ymax. Label the graph with its equation.

19. \(f(x) = 2x^2 - x - 465 \)
20. \(f(x) = x^3 - 24x^2 + 65x + 1050 \)
21. \(f(x) = x^4 - 2x^3 - 168x^2 + 288x + 3456 \)
22. \(f(x) = -x^4 - 3x^3 + 141x^2 + 523x - 660 \)
2.2 Answers

1.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = 2x + 1$</th>
<th>$(x, f(x))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2</td>
<td>−3</td>
<td>(−2, −3)</td>
</tr>
<tr>
<td>−1</td>
<td>−1</td>
<td>(−1, −1)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>(1, 3)</td>
</tr>
</tbody>
</table>

5.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = x^2 - 2$</th>
<th>$(x, f(x))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3</td>
<td>7</td>
<td>(−3, 7)</td>
</tr>
<tr>
<td>−2</td>
<td>2</td>
<td>(−2, 2)</td>
</tr>
<tr>
<td>−1</td>
<td>−1</td>
<td>(−1, −1)</td>
</tr>
<tr>
<td>0</td>
<td>−2</td>
<td>(0, −2)</td>
</tr>
<tr>
<td>1</td>
<td>−1</td>
<td>(1, −1)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(2, 2)</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>(3, 7)</td>
</tr>
</tbody>
</table>

3.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = 3 - x/2$</th>
<th>$(x, f(x))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2</td>
<td>4</td>
<td>(−2, 4)</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>(0, 3)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(2, 2)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(4, 1)</td>
</tr>
</tbody>
</table>

7.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = x^2/2 - 6$</th>
<th>$(x, f(x))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>−4</td>
<td>2</td>
<td>(−4, 2)</td>
</tr>
<tr>
<td>−2</td>
<td>−4</td>
<td>(−2, −4)</td>
</tr>
<tr>
<td>0</td>
<td>−6</td>
<td>(0, −6)</td>
</tr>
<tr>
<td>2</td>
<td>−4</td>
<td>(2, −4)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>(4, 2)</td>
</tr>
</tbody>
</table>
9. \(f(x) = \sqrt{x - 4} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>((x, f(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>(4, 0)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(5, 1)</td>
</tr>
<tr>
<td>6</td>
<td>1.4142</td>
<td>(6, 1.4142)</td>
</tr>
<tr>
<td>7</td>
<td>1.7321</td>
<td>(7, 1.7321)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>(8, 2)</td>
</tr>
<tr>
<td>9</td>
<td>2.2361</td>
<td>(9, 2.2361)</td>
</tr>
<tr>
<td>10</td>
<td>2.4495</td>
<td>(10, 2.4495)</td>
</tr>
</tbody>
</table>

11. \(f(x) = x^2 - x - 30 \)

13. \(f(x) = 11 + 10x - x^2 \)

15. \(f(x) = x^3 - 2x^2 - 29x + 30 \)
17.

\[f(x) = x^3 + 8x^2 - 53x - 60 \]

19.

\[f(x) = 2x^2 - x - 465 \]

21.

\[f(x) = x^4 - 2x^3 - 168x^2 + 288x + 3456 \]
2.3 Exercises

For Exercises 1-6, perform each of the following tasks.

i. Make a copy of the graph on a sheet of graph paper and apply the vertical line test.

ii. Write a complete sentence stating whether or not the graph represents a function. Explain the reason for your response.

1.

2.

3.

4.

5.
In Exercises 7-12, perform each of the following tasks.

i. Make an exact copy of the graph of the function f on a sheet of graph paper. Label and scale each axis. Remember to draw all lines with a ruler.

ii. Use the technique of Examples 3 and 4 in the narrative to evaluate the function at the given value. Draw and label the arrows as shown in Figures 4 and 5 in the narrative.

7. Use the graph of f to determine $f(2)$.

8. Use the graph of f to determine $f(3)$.

9. Use the graph of f to determine $f(-2)$.

10. Use the graph of f to determine $f(1)$.
11. Use the graph of \(f \) to determine \(f(1) \).

12. Use the graph of \(f \) to determine \(f(-2) \).

13. Use the graph of \(f \) to solve the equation \(f(x) = -2 \).

14. Use the graph of \(f \) to solve the equation \(f(x) = 1 \).

15. Use the graph of \(f \) to solve the equation \(f(x) = 2 \).

In Exercises 13-18, perform each of the following tasks.

i. Make an exact copy of the graph of the function \(f \) on a sheet of graph paper. Label and scale each axis. Remember to draw all lines with a ruler.

ii. Use the technique of Example 5 in the narrative to find the value of \(x \) that maps onto the given value. Draw and label the arrows as shown in Figure 6 in the narrative.
16. Use the graph of f to solve the equation $f(x) = -2$.

17. Use the graph of f to solve the equation $f(x) = 2$.

18. Use the graph of f to solve the equation $f(x) = -3$.

In the Exercises 19-22, perform each of the following tasks.

i. Make a copy of the graph of f on a sheet of graph paper. Label and scale each axis.

ii. Using a different colored pen or pencil, project each point on the graph of f onto the x-axis. Shade the resulting domain on the x-axis.

iii. Use both set-builder and interval notation to describe the domain.

19.

20.
In Exercises 23-26, perform each of the following tasks.

i. Make a copy of the graph of f on a sheet of graph paper. Label and scale each axis.

ii. Using a different colored pen or pencil, project each point on the graph of f onto the y-axis. Shade the resulting range on the y-axis.

iii. Use both set-builder and interval notation to describe the range.
In Exercises 27-30, perform each of the following tasks.

i. Use your graphing calculator to draw the graph of the given function. Make a reasonably accurate copy of the image in your viewing screen on your homework paper. Label and scale each axis with the WINDOW parameters xmin, xmax, ymin, and ymax. Label the graph with its equation.

ii. Using a colored pencil, project each point on the graph onto the x-axis; i.e., shade the domain on the x-axis. Use interval and set-builder notation to describe the domain.

iii. Use a purely algebraic technique, as demonstrated in Example 8 in the narrative, to find the domain. Compare this result with that found in part (ii).

iv. Using a different colored pencil, project each point on the graph onto the y-axis; i.e., shade the range on the y-axis. Use interval and set-builder notation to describe the range.

27. \(f(x) = \sqrt{x + 5} \).

28. \(f(x) = \sqrt{5 - x} \).

29. \(f(x) = -\sqrt{4 - x} \).

30. \(f(x) = -\sqrt{x + 4} \).
2.3 Answers

1. Note that in the figure below a vertical line cuts the graph more than once. Therefore, the graph does not represent the graph of a function.

3. No vertical line cuts the graph more than once (see figure below). Therefore, the graph represents a function.

5. Note that in the figure below a vertical line cuts the graph more than once. Therefore, the graph does not represent the graph of a function.

7. $f(2) = -1$

9. $f(-2) = 1$
11. $f(1) = 3$

13. The solution of $f(x) = -2$ is $x = -3$.

15. The solution of $f(x) = 2$ is $x = -2$.

17. The solution of $f(x) = 2$ is $x = -1$.

19. $\{x : x > -3\} = (-3, \infty)$

21. $\{x : x < 0\} = (-\infty, 0)$
23. \(\{y : y < 1\} = (-\infty, 1) \)

25. \(\{y : y > -2\} = (-2, \infty) \)

27. Domain = \([-5, \infty)\)
\(= \{x : x \geq -5\}\)

Range = \(\{y : y \geq 0\} = [0, \infty)\)

29. Domain = \((-\infty, 4]\) = \(\{x : x \leq 4\}\)

Range = \(\{y : y \leq 0\} = (-\infty, 0]\)
2.4 Exercises

In Exercises 1-6, you are given the definition of two functions f and g. Compare the functions, as in Example 1 of the narrative, at the given values of x.

1. \(f(x) = x + 2, g(x) = 4 - x \) at \(x = -3, 1, \) and 2.

2. \(f(x) = 2x - 3, g(x) = 3 - x \) at \(x = -4, 2, \) and 5.

3. \(f(x) = 3 - x, g(x) = x + 9 \) at \(x = -4, -3, \) and -2.

4. \(f(x) = x^2, g(x) = 4x + 5 \) at \(x = -2, 1, \) and 6.

5. \(f(x) = x^2, g(x) = -3x - 2 \) at \(x = -3, -1, \) and 0.

6. \(f(x) = |x|, g(x) = 4 - x \) at \(x = 1, 2, \) and 3.

In Exercises 7-12, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Make an accurate copy of the image on graph paper (label each equation, label and scale each axis), drop a dashed vertical line through the point of intersection, then label and shade the solution of \(f(x) = g(x) \) on the x-axis.

ii. Make a second copy of the image on graph paper, drop a dashed, vertical line through the point of intersection, then label and shade the solution of \(f(x) > g(x) \) on the x-axis. Use set-builder and interval notation to describe your solution set.

iii. Make a third copy of the image on

1 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
9. In Exercises 13-16, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Make an accurate copy of the image on graph paper, drop dashed, vertical lines through the points of intersection, then label and shade the solution of \(f(x) \geq g(x) \) on the \(x \)-axis. Use set-builder and interval notation to describe your solution set.

ii. Make a second copy of the image on graph paper, drop dashed, vertical lines through the points of intersection, then label and shade the solution of \(f(x) < g(x) \) on the \(x \)-axis. Use set-builder and interval notation to describe your solution set.
In Exercises 17-20, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Load each side of the equation into the Y= menu of your calculator. Adjust the WINDOW parameters so that the point of intersection of the graphs is visible in the viewing window. Use the intersect utility in the CALC menu of your calculator to determine the x-coordinate of the point of intersection.

ii. Make an accurate copy of the image in your viewing window on your homework paper. Label and scale each axis with xmin, xmax, ymin, and ymax, and label each graph with its equation.

iii. Draw a dashed, vertical line through the point of intersection. Shade and label the solution of the equation on the x-axis.

17. \(1.23x - 4.56 = 3.46 - 2.3x\)

18. \(2.23x - 1.56 = 5.46 - 3.3x\)

19. \(5.46 - 1.3x = 2.2x - 5.66\)

20. \(2.46 - 1.4x = 1.2x - 2.66\)
In Exercises 21-26, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Load each side of the inequality into the Y= menu of your calculator. Adjust the WINDOW parameters so that the point(s) of intersection of the graphs is visible in the viewing window. Use the intersect utility in the CALC menu of your calculator to determine the coordinates of the point(s) of intersection.

ii. Make an accurate copy of the image in your viewing window on your homework paper. Label and scale each axis with xmin, xmax, ymin, and ymax, and label each graph with its equation.

iii. Draw a dashed, vertical line through the point(s) of intersection. Shade and label the solution of the inequality on the x-axis. Use both set-builder and interval notation to describe the solution set.

21. \(1.6x + 1.23 \geq -2.3x - 4.2\)
22. \(1.24x + 5.6 < 1.2 - 0.52x\)
23. \(0.15x - 0.23 > 8.2 - 0.6x\)
24. \(-1.23x - 9.76 \leq 1.44x + 22.8\)
25. \(0.5x^2 - 5 < 1.23 - 0.75x\)
26. \(4 - 0.5x^2 \leq 0.72x - 1.34\)

In Exercises 27-30, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Make an accurate copy of the image on graph paper (label the graph with the letter \(f\) and label and scale each axis), drop a dashed vertical line through the \(x\)-intercept of the graph of \(f\), then label and shade the solution of \(f(x) = 0\) on the \(x\)-axis. Use set-builder notation to describe your solution.

ii. Make a second copy of the image on graph paper, drop a dashed, vertical line through the \(x\)-intercept of the graph of \(f\), then label and shade the solution of \(f(x) > 0\) on the \(x\)-axis. Use set-builder and interval notation to describe your solution set.

iii. Make a third copy of the image on graph paper, drop a dashed, vertical line through the \(x\)-intercept of the graph of \(f\), then label and shade the solution of \(f(x) < 0\) on the \(x\)-axis. Use set-builder and interval notation to describe your solution set.

27.
In Exercises 31-34, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Make an accurate copy of the image on graph paper, drop dashed, vertical lines through the x-intercepts, then label and shade the solution of \(f(x) \geq 0 \) on the x-axis. Use set-builder and interval notation to describe your solution set.

ii. Make a second copy of the image on graph paper, drop dashed, vertical lines through the x-intercepts, then label and shade the solution of \(f(x) < 0 \) on the x-axis. Use set-builder and interval notation to describe your solution set.
In Exercises 35-38, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Load the given function f into the $Y=\text{menu}$ of your calculator. Adjust the WINDOW parameters so that the x-intercept(s) of the graph of f is visible in the viewing window. Use the zero utility in the CALC menu of your calculator to determine the coordinates of the x-intercept(s) of the graph of f.

ii. Make an accurate copy of the image in your viewing window on your homework paper. Label and scale each axis with xmin, xmax, ymin, and ymax, and label the graph with its equation.

iii. Draw a dashed, vertical line through the x-intercept(s). Shade and label the solution of the inequality $f(x) > 0$ on the x-axis. Use both set-builder and interval notation to describe the solution set.

35. $f(x) = -1.25x + 3.58$
36. $f(x) = 1.34x - 4.52$
37. $f(x) = 1.25x^2 + 4x - 5.9125$
38. $f(x) = -1.32x^2 - 3.96x + 5.9532$

In Exercises 39-42, perform each of the following tasks. Remember to use a ruler to draw all lines.

i. Load the given function f into the $Y=\text{menu}$ of your calculator. Adjust the WINDOW parameters so that the x-intercept(s) of the graph of f is visible in the viewing window. Use the zero utility in the CALC menu of your calculator to determine the coordinates of the x-intercept(s) of the graph of f.

ii. Make an accurate copy of the image
in your viewing window on your homework paper. Label and scale each axis with xmin, xmax, ymin, and ymax, and label the graph with its equation.

iii. Draw a dashed, vertical line through the x-intercept(s). Shade and label the solution of the inequality $f(x) \leq 0$ on the x-axis. Use both set-builder and interval notation to describe the solution set.

39. $f(x) = -1.45x - 5.6$

40. $f(x) = 1.35x + 8.6$

41. $f(x) = -1.11x^2 - 5.9940x + 1.2432$

42. $f(x) = 1.22x^2 - 6.3440x + 1.3176$
2.4 Answers

1. \(f(-3) < g(-3) \), \(f(1) = g(1) \), and \(f(2) > g(2) \).

3. \(f(-4) > g(-4) \), \(f(-3) = g(-3) \), and \(f(-2) < g(-2) \).

5. \(f(-3) > g(-3) \), \(f(-1) = g(-1) \), and \(f(0) > g(0) \).

7. The solution of \(f(x) = g(x) \) is \(x = 3 \).

9. The solution of \(f(x) = g(x) \) is \(x = -2 \).

The solution of \(f(x) > g(x) \) is \((3, \infty) = \{x : x > 3\} \).
The solution of \(f(x) > g(x) \) is \((-\infty, -2) = \{ x : x < -2 \} \).

The solution of \(f(x) > g(x) \) is \((3, \infty) = \{ x : x > 3 \} \).

The solution of \(f(x) < g(x) \) is \((-2, \infty) = \{ x : x > -2 \} \).

The solution of \(f(x) < g(x) \) is \((-\infty, 3) = \{ x : x < 3 \} \).

11. The solution of \(f(x) = g(x) \) is \(x = 3 \).

13. The solution of \(f(x) \geq g(x) \) is \([-3, 3] = \{ x : -3 \leq x \leq 3 \} \).
The solution of $f(x) < g(x)$ is $(-\infty, -3) \cup (3, \infty)$
$= \{x : x < -3 \text{ or } x > 3\}$.

15. The solution of $f(x) \geq g(x)$ is
$(-\infty, -2] \cup [2, \infty)$
$= \{x : x \leq -2 \text{ or } x \geq 2\}$.

17. $x = 2.271955$

19. $x = 3.177143$
21. \([-1.392308, \infty) = \{x : x \geq -1.392308\}\) 27. The solution of \(f(x) = 0\) is \(x = -1\).

23. \((11.24, \infty) = \{x : x > 11.24\}\)

25. \((-4.358670, 2.858670) = \{x : -4.358670 < x < 2.858670\}\)

The solution of \(f(x) > 0\) is \((-1, \infty) = \{x : x > -1\}\).

The solution of \(f(x) < 0\) is \((-\infty, -1) = \{x : x < -1\}\).
29. The solution of \(f(x) = 0 \) is \(x = 2 \).

31. The solution of \(f(x) \geq 0 \) is \([−3, 2] = \{x: x \leq −2 \text{ or } x \geq 1\} \).

The solution of \(f(x) > 0 \) is \((−∞, 2) = \{x: x < 2\} \).

The solution of \(f(x) < 0 \) is \((−∞, −3) \cup (2, ∞) = \{x: x < −3 \text{ or } x > 2\} \).

33. The solution of \(f(x) \geq 0 \) is \((−∞, −2] \cup [1, ∞) = \{x: x \leq −2 \text{ or } x \geq 1\} \).
The solution of $f(x) < 0$ is $(-2, 1) = \{x : -2 < x < 1\}$.

39. $[-3.8621, \infty) = \{x : x \geq -3.8621\}$

35. $(-\infty, 2.8640) = \{x : x < 2.8640\}$

41. $(-\infty, -5.6] \cup [0.2, \infty) = \{x : x \leq -5.6 \text{ or } x \geq 0.2\}$

37. $(-\infty, -4.3) \cup (1.1, \infty) = \{x : x < -4.3 \text{ or } x > 1.1\}$
2.5 Exercises

Pictured below is the graph of a function f.

![Graph of function f]

The table that follows evaluates the function f in the plot at key values of x. Notice the horizontal format, where the first point in the table is the ordered pair $(-4, 0)$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>-4</td>
<td>-4</td>
<td>0</td>
</tr>
</tbody>
</table>

Use the graph and the table to complete each of following tasks for Exercises 1-10.

i. Set up a coordinate system on graph paper. Label and scale each axis, then copy and label the original graph of f onto your coordinate system. Remember to draw all lines with a ruler.

ii. Use the original table to help complete the table for the given function in the exercise.

iii. Using a different colored pencil, plot the data from your completed table on the same coordinate system as the original graph of f. Use these points to help complete the graph of the given function in the exercise, then label this graph with its equation given in the exercise.

1. $y = 2f(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. $y = (1/2)f(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. $y = -f(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. $y = f(x) - 2$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. $y = f(x) + 4$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. $y = -2f(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/}\]
7. \(y = (-1/2)f(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. \(y = -f(x) + 3 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. \(y = -f(x) - 2 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. \(y = (-1/2)f(x) + 3 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

draw the graphs of \(y = x^2 + 2 \), \(y = x^2 + 4 \), and \(y = x^2 + 6 \). In your own words, explain what you learned from this exercise.

15. Use your graphing calculator to draw the graph of \(y = |x| \). Then, in succession, draw the graphs of \(y = 2|x| \), \(y = 3|x| \), and \(y = 4|x| \). In your own words, explain what you learned from this exercise.

16. Use your graphing calculator to draw the graph of \(y = |x| \). Then, in succession, draw the graphs of \(y = (1/2)|x| \), \(y = (1/3)|x| \), and \(y = (1/4)|x| \). In your own words, explain what you learned from this exercise.

Pictured below is the graph of a function \(f \). In Exercises 17-22, use this graph to perform each of the following tasks.

![Graph of a function](image)

i. Set up a coordinate system on a sheet of graph paper. Label and scale each axis. Make an exact copy of the graph of \(f \) on your coordinate system. Remember to draw all lines with a ruler.

ii. In the narrative, a shadow box at the end of the section summarizes the concepts and technique of vertical scaling, vertical reflection, and vertical translation. Use the shortcut ideas presented in this summary shadow box.

Version: Fall 2007
to draw the graphs of the functions that follow without using tables.

iii. Use a different colored pencil to draw the graph of the function given in the exercise. Label this graph with its equation. Be sure that key points are accurately plotted. In each exercise, please plot exactly two plots per coordinate system, the graph of original function \(f \) and the graph of the function in the exercise.

17. \(y = (1/2)f(x) \).
18. \(y = 2f(x) \).
19. \(y = -f(x) \).
20. \(y = f(x) - 1 \).
21. \(y = f(x) + 3 \).
22. \(y = f(x) - 4 \).

Pictured below is the graph of a function \(f \). In Exercises 23-28, use this graph to perform each of the following tasks.

i. Set up a coordinate system on a sheet of graph paper. Label and scale each axis. Make an exact copy of the graph of \(f \) on your coordinate system. Remember to draw all lines with a ruler.
ii. In the narrative, a shadow box at the end of the section summarizes the concepts and technique of vertical scaling, vertical reflection, and vertical translation. Use the shortcut ideas presented in this summary shadow box to draw the graphs of the functions that follow without using tables.

iii. Use a different colored pencil to draw the graph of the function given in the exercise. Label this graph with its equation. Be sure that key points are accurately plotted. In each exercise, please plot exactly two plots per coordinate system, the graph of original function \(f \) and the graph of the function in the exercise.

23. \(y = 2f(x) \).
24. \(y = (1/2)f(x) \).
25. \(y = -f(x) \).
26. \(y = f(x) + 3 \).
27. \(y = f(x) - 2 \).
28. \(y = f(x) - 1 \).

Pictured below is the graph of a function \(f \). In Exercises 29-34, use this graph to perform each of the following tasks.

i. Set up a coordinate system on a sheet
of graph paper. Label and scale each axis. Make an exact copy of the graph of f on your coordinate system. \emph{Remember to draw all lines with a ruler.}

ii. In the narrative, a shadow box at the end of the section summarizes the concepts and technique of vertical scaling, vertical reflection, and vertical translation. Use the shortcut ideas presented in this summary shadow box to draw the graphs of the functions that follow \textbf{without} using tables.

iii. Use a different colored pencil to draw the graph of the function given in the exercise. Label this graph with its equation. Be sure that key points are accurately plotted. In each exercise, please plot exactly two plots per coordinate system, the graph of original function f and the graph of the function in the exercise.

29. $y = (-1/2)f(x)$.

30. $y = -2f(x)$.

31. $y = -f(x) + 2$.

32. $y = -f(x) - 3$.

33. $y = 2f(x) - 3$.

34. $y = (-1/2)f(x) + 1$.
2.5 Answers

1. \(x \times 10 \), \(y \times 10 \), \(f(y) = 2f(x) \)

3. \(x \times 10 \), \(y \times 10 \), \(f(y) = -f(x) \)

5. \(x \times 10 \), \(y \times 10 \), \(f(y) = f(x) + 4 \)

7. \(x \times 10 \), \(y \times 10 \), \(f(y) = -\frac{1}{2}f(x) \)
9. \[y = f(x) - 2 \]

11. Multiplying by \(-1\), as in \(y = -\sqrt{x} \), reflects the graph across the \(x \)-axis.

13. Subtracting \(c \), where \(c > 0 \), moves the graph \(c \) units downward.

15. Multiply by a scalar \(a \), such that \(a \) is larger than \(1 \), stretches the graph vertically by a factor of \(a \).

17. \[y = \frac{1}{2} f(x) \]

19. \[y = -f(x) \]

21. \[y = f(x) + 3 \]

23. \[y = 2f(x) \]
25. \[x_{10} \quad y_{10} \quad f_{y} = -f(x) \]

31. \[x_{10} \quad y_{10} \quad f_{y} = f(x) - 2 \]

27. \[x_{10} \quad y_{10} \quad f_{y} = f(x) - 2 \]

33. \[x_{10} \quad y_{10} \quad f_{y} = 2f(x) - 3 \]

29. \[x_{10} \quad y_{10} \quad f_{y} = (-1/2)f(x) \]
2.6 Exercises

Pictured below is the graph of a function \(f \).

![Graph of function f](image)

The table that follows evaluates the function \(f \) in the plot at key values of \(x \). Notice the horizontal format, where the first point in the table is the ordered pair \((-6, 0)\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>-2</td>
<td>0</td>
</tr>
</tbody>
</table>

Use the graph and the table to complete each of following tasks for Exercises 1-10.

i. Set up a coordinate system on graph paper. Label and scale each axis, then copy and label the original graph of \(f \) onto your coordinate system. Remember to draw all lines with a ruler.

ii. Use the original table to help complete the table for the given function in the exercise.

iii. Using a different colored pencil, plot the data from your completed table on the same coordinate system as the original graph of \(f \). Use these points to help complete the graph of the given function in the exercise, then label this graph with its equation given in the exercise.

1. \(y = f(2x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. \(y = f((1/2)x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-12</th>
<th>-8</th>
<th>-4</th>
<th>0</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. \(y = f(-x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. \(y = f(x + 3) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-9</th>
<th>-7</th>
<th>-5</th>
<th>-3</th>
<th>-1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. \(y = f(x - 1) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-5</th>
<th>-3</th>
<th>-1</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. \(y = f(-2x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/
7. \(y = f((-1/2)x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-8</th>
<th>-4</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. \(y = f(-x - 2) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-6</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. \(y = f(-x + 1) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-1</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. \(y = f(-x/4) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-16</th>
<th>-8</th>
<th>0</th>
<th>8</th>
<th>16</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Use your graphing calculator to draw the graph of \(y = \sqrt{x} \). Then, draw the graph of \(y = \sqrt{-x} \). In your own words, explain what you learned from this exercise.

12. Use your graphing calculator to draw the graph of \(y = |x| \). Then, draw the graph of \(y = |-x| \). In your own words, explain what you learned from this exercise.

13. Use your graphing calculator to draw the graph of \(y = x^2 \). Then, in succession, draw the graphs of \(y = (x - 2)^2 \), \(y = (x - 4)^2 \), and \(y = (x - 6)^2 \). In your own words, explain what you learned from this exercise.

14. Use your graphing calculator to draw the graph of \(y = x^2 \). Then, in succession, draw the graphs of \(y = (x + 2)^2 \), \(y = (x + 4)^2 \), and \(y = (x + 6)^2 \). In your own words, explain what you learned from this exercise.

15. Use your graphing calculator to draw the graph of \(y = |x| \). Then, in succession, draw the graphs of \(y = |2x| \), \(y = |3x| \), and \(y = |4x| \). In your own words, explain what you learned from this exercise.

16. Use your graphing calculator to draw the graph of \(y = |x| \). Then, in succession, draw the graphs of \(y = |(1/2)x| \), \(y = |(1/3)x| \), and \(y = |(1/4)x| \). In your own words, explain what you learned from this exercise.

Pictured below is the graph of a function \(f \). In Exercises 17-22, use this graph to perform each of the following tasks.

i. Set up a coordinate system on a sheet of graph paper. Label and scale each axis. Make an exact copy of the graph of \(f \) on your coordinate system. Remember to draw all lines with a ruler.

ii. In the narrative, a shadow box at the end of the section summarizes the concepts and technique of horizontal scaling, horizontal reflection, and horizontal translation. Use the shortcut ideas presented in this summary shadow

Version: Fall 2007
box to draw the graphs of the functions that follow without using tables.

iii. Use a different colored pencil to draw the graph of the function given in the exercise. Label this graph with its equation. Be sure that key points are accurately plotted. In each exercise, please plot exactly two plots per coordinate system, the graph of original function \(f \) and the graph of the function in the exercise.

17. \(y = f(2x) \).

18. \(y = f((1/2)x) \).

19. \(y = f(-x) \).

20. \(y = f(x - 1) \).

21. \(y = f(x + 3) \).

22. \(y = f(x - 2) \).

Pictured below is the graph of a function \(f \). In Exercises 23-28, use this graph to perform each of the following tasks.

i. Set up a coordinate system on a sheet of graph paper. Label and scale each axis. Make an exact copy of the graph of \(f \) on your coordinate system. Remember to draw all lines with a ruler.

ii. In the narrative, a shadow box at the end of the section summarizes the concepts and technique of horizontal scaling, horizontal reflection, and horizontal translation. Use the shortcut ideas presented in this summary shadow box to draw the graphs of the functions that follow without using tables.

iii. Use a different colored pencil to draw the graph of the function given in the exercise. Label this graph with its equation. Be sure that key points are accurately plotted. In each exercise, please plot exactly two plots per coordinate system, the graph of original function \(f \) and the graph of the function in the exercise.

23. \(y = f(2x) \).

24. \(y = f((1/2)x) \).

25. \(y = f(-x) \).

26. \(y = f(x + 3) \).

27. \(y = f(x - 2) \).

28. \(y = f(x + 1) \).
2.6 Answers

1. \[f_y = f(2x) \]

3. \[f_y = f(-x) \]

5. \[f_y = f(x-1) \]

7. \[f_y = f\left(-\frac{1}{2}x\right) \]
9.

11. Multiplying on the inside by -1, as in $y = \sqrt{-x}$, reflects the graph across the y-axis.

13. Replacing x with $x - c$, where c is positive, moves the graph c units to the right.

15. Multiplying by a scalar a, such that a is larger than 1, compresses the graph horizontally by a factor of a.

17.

19.

21.

23.
25.

\[y = f(-x) \]

27.

\[y = f(x-2) \]