2.1 Exercises

In Exercises 1-6, state the domain and range of the given relation.

1. \(R = \{(1,3), (2,4), (3,4)\} \)
2. \(R = \{(1,3), (2,4), (2,5)\} \)
3. \(R = \{(1,4), (2,5), (2,6)\} \)
4. \(R = \{(1,5), (2,4), (3,6)\} \)

In Exercises 7-12, create a mapping diagram for the given relation and state whether or not it is a function.

7. The relation in Exercise 1.
8. The relation in Exercise 2.
11. The relation in Exercise 5.

13. Given that \(g \) takes a real number and doubles it, then \(g : x \rightarrow ? \).
14. Given that \(f \) takes a real number and divides it by 3, then \(f : x \rightarrow ? \).
15. Given that \(g \) takes a real number and adds 3 to it, then \(g : x \rightarrow ? \).
16. Given that \(h \) takes a real number and subtracts 4 from it, then \(h : x \rightarrow ? \).
17. Given that \(g \) takes a real number, doubles it, then adds 5, then \(g : x \rightarrow ? \).
18. Given that \(h \) takes a real number, subtracts 3 from it, then divides the result by 4, then \(h : x \rightarrow ? \).

Given that the function \(f \) is defined by the rule \(f : x \rightarrow 3x - 5 \), determine where the input number is mapped in Exercises 19-22.

19. \(f : 3 \rightarrow ? \)

\[\text{Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/} \]
Given that the function f is defined by the rule $f: x \rightarrow 4 - 5x$, determine where the input number is mapped in Exercises 23-26.

20. $f: -5 \rightarrow ?$
21. $f: a \rightarrow ?$
22. $f: 2a + 3 \rightarrow ?$

23. $f: 2 \rightarrow ?$
24. $f: -3 \rightarrow ?$
25. $f: a \rightarrow ?$
26. $f: 2a + 11 \rightarrow ?$

Given that the function f is defined by the rule $f: x \rightarrow x^2 - 4x - 6$, determine where the input number is mapped in Exercises 27-30.

27. $f: 1 \rightarrow ?$
28. $f: -2 \rightarrow ?$
29. $f: -1 \rightarrow ?$
30. $f: a \rightarrow ?$

31. $f: a \rightarrow ?$
32. $f: a + 1 \rightarrow ?$
33. $f: 2a - 5 \rightarrow ?$
34. $f: a + h \rightarrow ?$

35. $f: 2 \rightarrow ?$
36. $g: 2 \rightarrow ?$
37. $f: a + 1 \rightarrow ?$
38. $g: a - 3 \rightarrow ?$

39. Given that g takes a real number and triples it, then $g(x) = ?$.
40. Given that f takes a real number and divides it by 5, then $f(x) = ?$.
41. Given that g takes a real number and subtracts it from 10, then $g(x) = ?$.
42. Given that f takes a real number, multiplies it by 5 and then adds 4 to the result, then $f(x) = ?$.
43. Given that f takes a real number, doubles it, then subtracts the result from 11, then $f(x) = ?$.
44. Given that h takes a real number, doubles it, adds 5, then takes the square root of the result, then $h(x) = ?$.

In Exercises 45-54, evaluate the given function at the given value b.

45. $f(x) = 12x + 2$ for $b = 6$.
46. $f(x) = -11x - 4$ for $b = -3$.
47. $f(x) = -9x - 1$ for $b = -5$.
48. $f(x) = 11x + 4$ for $b = -4$.

Version: Fall 2007
49. \(f(x) = 4 \) for \(b = -12 \).

50. \(f(x) = 7 \) for \(b = -7 \).

51. \(f(x) = 0 \) for \(b = -7 \).

52. \(f(x) = 12x + 8 \) for \(b = -3 \).

53. \(f(x) = -9x + 3 \) for \(b = -1 \).

54. \(f(x) = 6x - 3 \) for \(b = 3 \).

In Exercises 55-58, given that the function \(f \) is defined by the rule \(f(x) = 2x + 7 \), determine where the input number is mapped.

55. \(f(a) = ? \)

56. \(f(a + 1) = ? \)

57. \(f(3a - 2) = ? \)

58. \(f(a + h) = ? \)

In Exercises 59-62, given that the function \(g \) is defined by the rule \(g(x) = 3 - 2x \), determine where the input number is mapped.

59. \(g(a) = ? \)

60. \(g(a + 3) = ? \)

61. \(g(2 - 5a) = ? \)

62. \(g(a + h) = ? \)

Given that the functions \(f \) and \(g \) are defined by the rules \(f(x) = 3x + 4 \) and \(g(x) = 2x - 5 \), determine where the input number is mapped in Exercises 67-70.

67. \(f(g(2)) = ? \)

68. \(g(f(2)) = ? \)

69. \(f(g(a)) = ? \)

70. \(g(f(a)) = ? \)

Given that the functions \(f \) and \(g \) are defined by the rules \(f(x) = 2x - 9 \) and \(g(x) = 11 \), determine where the input number is mapped in Exercises 71-74.

71. \(f(g(2)) = ? \)

72. \(g(f(2)) = ? \)

73. \(f(g(a)) = ? \)

74. \(g(f(a)) = ? \)

Use set-builder notation to describe the domain of each of the functions defined in Exercises 75-78.

75. \(f(x) = \frac{93}{x + 98} \)

76. \(f(x) = \frac{54}{x + 65} \)

77. \(f(x) = -\frac{87}{x - 88} \)

78. \(f(x) = -\frac{30}{x - 52} \)
Use set-builder and interval notation to describe the domain of the functions defined in Exercises 79-82.

79. \(f(x) = \sqrt{x + 69} \)

80. \(f(x) = \sqrt{x + 62} \)

81. \(f(x) = \sqrt{x - 81} \)

82. \(f(x) = \sqrt{x - 98} \)

Two integers are said to be relatively prime if their greatest common divisor is 1. For example, the greatest common divisor of 6 and 35 is 1, so 6 and 35 are relatively prime. On the other hand, the greatest common divisor of 14 and 21 is not 1 (it is 7), so 14 and 21 are not relatively prime. The Euler \(\phi \)-function is defined as follows:

- If \(n = 1 \), then \(\phi(n) = 1 \).
- If \(n > 1 \), then \(\phi(n) \) is the number of positive integers less than \(n \) that are relatively prime to \(n \). In Exercises 83-84, evaluate the Euler \(\phi \)-function at the given input.

83. \(\phi(12) \)

84. \(\phi(36) \)
2.1 Answers

1. Domain = \{1, 2, 3\}, Range = \{3, 4\}
23. \(f : 2 \rightarrow -6 \)

3. Domain = \{1, 2\}, Range = \{4, 5, 6\}
25. \(f : a \rightarrow 4 - 5a \)

5. Domain = \{1, 2, 3\}, Range = \{1, 2, 3, 4\}
27. \(f : 1 \rightarrow -9 \)

7.
\[
\begin{array}{c}
R \\
1 \rightarrow 3 \\
2 \rightarrow 4 \\
3
\end{array}
\]
Function.

9.
\[
\begin{array}{c}
R \\
1 \rightarrow 4 \\
2 \rightarrow 5 \\
3 \rightarrow 6
\end{array}
\]
Not a function.

11.
\[
\begin{array}{c}
R \\
1 \rightarrow 1 \\
2 \rightarrow 2 \\
3 \rightarrow 3 \\
4
\end{array}
\]
Not a function.

13. \(g : x \rightarrow 2x \)

15. \(g : x \rightarrow x + 3 \)

17. \(g : x \rightarrow 2x + 5 \)

19. \(f : 3 \rightarrow 4 \)

21. \(f : a \rightarrow 3a - 5 \)

29. \(f : -1 \rightarrow -1 \)

31. \(f : a \rightarrow 3a - 9 \)

33. \(f : 2a - 5 \rightarrow 6a - 24 \)

35. \(f : 2 \rightarrow 7 \)

37. \(f : a + 1 \rightarrow 2a + 5 \)

39. \(g(x) = 3x \)

41. \(g(x) = 10 - x \)

43. \(f(x) = 11 - 2x \)

45. 74

47. 44

49. 4

51. 0

53. 12

55. \(f(a) = 2a + 7 \)

57. \(f(3a - 2) = 6a + 3 \)

59. \(g(a) = 3 - 2a \)

61. \(g(2 - 5a) = 10a - 1 \)

63. \(f(a) = 1 - a \)

65. \(f(a + 3) = -a - 2 \)
67. \(f(g(2)) = 1 \)

69. \(f(g(a)) = 6a - 11 \)

71. \(f(g(2)) = 13 \)

73. \(f(g(a)) = 13 \)

75. Domain = \(\{ x : x \neq -98 \} \)

77. Domain = \(\{ x : x \neq 88 \} \)

79. Domain = \([-69, \infty) = \{ x : x \geq -69 \}\)

81. Domain = \([81, \infty) = \{ x : x \geq 81 \}\)

83. \(\phi(12) = 4 \)