4.1 Exercises

1. Given the function defined by the rule \(f(x) = 3 \), evaluate \(f(-3) \), \(f(0) \) and \(f(4) \), then sketch the graph of \(f \).

2. Given the function defined by the rule \(g(x) = 2 \), evaluate \(g(-2) \), \(g(0) \) and \(g(4) \), then draw the graph of \(g \).

3. Given the function defined by the rule \(h(x) = -4 \), evaluate \(h(-2) \), \(h(a) \), and \(h(2x + 3) \), then draw the graph of \(h \).

4. Given the function defined by the rule \(f(x) = -2 \), evaluate \(f(0) \), \(f(b) \), and \(f(5 - 4x) \), then draw the graph of \(f \).

5. The speed of an automobile traveling on the highway is a function of time and is described by the constant function \(v(t) = 30 \), where \(t \) is measured in hours and \(v \) is measured in miles per hour. Draw the graph of \(v \) versus \(t \). Be sure to label each axis with appropriate units. Shade the area under the graph of \(v \) over the time interval \([0, 5]\) hours. What is the area under the graph of \(v \) over this time interval and what does it represent?

6. The speed of a skateboarder as she travels down a slope is a function of time and is described by the constant function \(v(t) = 8 \), where \(t \) is measured in seconds and \(v \) is measured in feet per second. Draw the graph of \(v \) versus \(t \). Be sure to label each axis with the appropriate units. Shade the area under the graph of \(v \) over the time interval \([0, 60]\) seconds. What is the area under the graph of \(v \) over this time interval and what does it represent?

7. An unlicensed plumber charges 15 dollars for each hour of labor. Let’s define this rate as a function of time by \(r(t) = 15 \), where \(t \) is measured in hours and \(r \) is measured in dollars per hour. Draw the graph of \(r \) versus \(t \). Be sure to label each axis with appropriate units. Shade the area under the graph of \(r \) over the time interval \([0, 4]\) hours. What is the area under the graph of \(r \) over this time interval and what does it represent?

8. A carpenter charges a fixed rate for each hour of labor. Let’s describe this rate as a function of time by \(r(t) = 25 \), where \(t \) is measured in hours and \(r \) is measured in dollars per hour. Draw the graph of \(r \) versus \(t \). Be sure to label each axis with appropriate units. Shade the area under the graph of \(r \) over the time interval \([0, 5]\) hours. What is the area under the graph of \(r \) over this time interval and what does it represent?

9. Given the function defined by the rule

\[
 f(x) = \begin{cases}
 0, & \text{if } x < 0 \\
 2, & \text{if } x \geq 0,
\end{cases}
\]

evaluate \(f(-2) \), \(f(0) \), and \(f(3) \), then draw the graph of \(f \) on a sheet of graph paper. State the domain and range of \(f \).

10. Given the function defined by the rule

\[
 f(x) = \begin{cases}
 2, & \text{if } x < 0 \\
 0, & \text{if } x \geq 0,
\end{cases}
\]

evaluate \(f(-2) \), \(f(0) \), and \(f(3) \), then draw the graph of \(f \) on sheet of graph paper. State the domain and range of \(f \).
11. Given the function defined by the rule

\[g(x) = \begin{cases}
-3, & \text{if } x < -2, \\
1, & \text{if } -2 \leq x < 2, \\
3, & \text{if } x \geq 2,
\end{cases} \]

evaluate \(g(-3) \), \(g(-2) \), and \(g(5) \), then draw the graph of \(g \) on a sheet of graph paper. State the domain and range of \(g \).

12. Given the function defined by the rule

\[g(x) = \begin{cases}
4, & \text{if } x \leq -1, \\
2, & \text{if } -1 < x \leq 2, \\
-3, & \text{if } x > 2,
\end{cases} \]

evaluate \(g(-1) \), \(g(2) \), and \(g(3) \), then draw the graph of \(g \) on a sheet of graph paper. State the domain and range of \(g \).

In Exercises 13-16, determine a piecewise definition of the function described by the graphs, then state the domain and range of the function.

13.

14.

15.

16.
17. Given the piecewise definition
\[f(x) = \begin{cases}
-x - 3, & \text{if } x < -3, \\
 x + 3, & \text{if } x \geq -3,
\end{cases} \]
evaluate \(f(-4) \) and \(f(0) \), then draw the graph of \(f \) on a sheet of graph paper. State the domain and range of the function.

18. Given the piecewise definition
\[f(x) = \begin{cases}
-x + 1, & \text{if } x < 1, \\
 x - 1, & \text{if } x \geq 1,
\end{cases} \]
evaluate \(f(-2) \) and \(f(3) \), then draw the graph of \(f \) on a sheet of graph paper. State the domain and range of the function.

19. Given the piecewise definition
\[g(x) = \begin{cases}
-2x + 3, & \text{if } x < 3/2, \\
 2x - 3, & \text{if } x \geq 3/2,
\end{cases} \]
evaluate \(g(0) \) and \(g(3) \), then draw the graph of \(g \) on a sheet of graph paper. State the domain and range of the function.

20. Given the piecewise definition
\[g(x) = \begin{cases}
-3x - 4, & \text{if } x < -4/3, \\
 3x + 4, & \text{if } x \geq -4/3,
\end{cases} \]
evaluate \(g(-2) \) and \(g(3) \), then draw the graph of \(g \) on a sheet of graph paper. State the domain and range of the function.

21. A battery supplies voltage to an electric circuit in the following manner. Before time \(t = 0 \) seconds, a switch is open, so the voltage supplied by the battery is zero volts. At time \(t = 0 \) seconds, the switch is closed and the battery begins to supply a constant 3 volts to the circuit. At time \(t = 2 \) seconds, the switch is opened again, and the voltage supplied by the battery drops immediately to zero volts. Sketch a graph of the voltage \(v \) versus time \(t \), label each axis with the appropriate units, then provide a piecewise definition of the voltage \(v \) supplied by the battery as a function of time \(t \).

22. Prior to time \(t = 0 \) minutes, a drum is empty. At time \(t = 0 \) minutes a hose is turned on and the water level in the drum begins to rise at a constant rate of 2 inches every minute. Let \(h \) represent water level (in inches) at time \(t \) (in minutes). Sketch the graph of \(h \) versus \(t \), label the axes with appropriate units, then provide a piecewise definition of \(h \) as a function of \(t \).
4.1 Solutions

1. Because \(f(x) = 3 \), we know that \(f \) maps any number to the number 3. Thus, \(f(-3) = 3 \), \(f(0) = 3 \), and \(f(4) = 3 \).

The graph of a constant function is always a horizontal line. In this case, \(f(x) = 3 \), so the function values are constantly equal to 3. Hence, the graph is a horizontal line 3 units up in the \(y \)-direction.

![Graph of \(f(x) = 3 \)](image)

3. Because \(h(x) = -4 \), we know that \(h \) maps any number to the number \(-4\). Thus, \(h(-2) = -4 \), \(h(a) = -4 \), and \(h(2x + 3) = -4 \).

The graph of a constant function is always a horizontal line. In this case, \(h(x) = -4 \), so the function values are constantly equal to \(-4\). Hence, the graph is a horizontal line 4 units down in the \(y \)-direction.

![Graph of \(h(x) = -4 \)](image)
5. The graph of the constant function \(v(t) = 30 \) is the horizontal line shown in the following figure.

![Graph of v(t) = 30](image)

The area under \(v(t) = 30 \) is

\[
\text{Area} = 30 \text{ mi/h} \times 5 \text{ h} = 150 \text{ mi}.
\]

This is the distance traveled by the car over the 5-hour time period.

7. The graph of the constant function \(r(t) = 15 \) is the horizontal line shown in the following figure.

![Graph of r(t) = 15](image)

The area under \(r(t) = 15 \) is

\[
\text{Area} = 15 \text{ dollars/h} \times 4 \text{ h} = 60 \text{ dollars}.
\]

This is the bill for labor charged by the plumber for 4 hours of work.

9. Because \(-2\) is less than 0, we use the first piece of the function to determine that \(f(-2) = 0 \). Because 0 is greater than or equal to zero, we use the second piece of the function to determine that \(f(0) = 2 \). Finally, because 3 is greater than or equal to zero, we use the second piece of the function to determine that \(f(3) = 2 \). The graph follows.
Chapter 4 Absolute Value Functions

The domain of \(f \) is the set of all real numbers, easily seen by examining the piecewise definition or by projecting all points on the graph onto the \(x \)-axis. The range has only a finite number of possibilities, so the range is best described by listing each member.

\[
\text{Range} = \{0, 2\}
\]

11. Because \(-3\) is less than \(-2\), we use the first piece of the function to determine that \(g(-3) = -3 \). Because \(-2\) is greater than or equal to \(-2\) and less than 2, we use the second piece of the function to determine that \(g(-2) = 1 \). Finally, because 5 is greater than or equal to 2, we use the third piece of the function to determine that \(g(5) = 3 \). The graph follows.

The domain of \(g \) is the set of all real numbers, easily seen by examining the piecewise definition or by projecting all points on the graph onto the \(x \)-axis. The range has only a finite number of possibilities, so the range is best described by listing each member.

\[
\text{Range} = \{-3, 1, 3\}
\]
13. Here is the graph of f.

From the graph of f, if $x < 0$, then $f(x) = 3$. On the other hand, if $x \geq 0$, then $f(x) = -2$. Consequently,

$$f(x) = \begin{cases} 3, & \text{if } x < 0, \\ -2, & \text{if } x \geq 0. \end{cases}$$

The domain of f is the set of all real numbers. The range of f is $\{-2, 3\}$.

15. Here is the graph of f.

From the graph, if $x < 0$, then $g(x) = 2$. Secondly, if $0 \leq x < 2$, then $g(x) = -2$. Thirdly, if $x \geq 2$, then $g(x) = 2$. Consequently,

$$g(x) = \begin{cases} 2, & \text{if } x < 0, \\ -2, & \text{if } 0 \leq x < 2, \\ 2, & \text{if } x \geq 2. \end{cases}$$

The domain of f is the set of all real numbers. The range of f is $\{-2, 2\}$.

17. We’re given the following piecewise definition.

$$f(x) = \begin{cases} -x - 3, & \text{if } x < -3, \\ x + 3, & \text{if } x \geq -3. \end{cases}$$
Note that $-4 < -3$, so to evaluate $f(-4)$, we should substitute into the first piece of this function, namely

\[f(x) = -x - 3 \]

\[f(-4) = -(4) - 3 = 1. \] (1)

Note that $0 \geq -3$, so to evaluate $f(0)$, we should substitute into the second piece of this function, namely

\[f(x) = x + 3 \]

\[f(0) = 0 + 3 = 3. \]

The first part of the function is $f(x) = -x - 3$, but only for $x < -3$. Hence, this is a ray, starting at the point where $x = -3$ and moving to the left. At $x = -3$, $f(-3) = -(3) - 3 = 0$, so the starting point of the ray is at $(-3, 0)$. We have already found that $f(-4) = 1$, so this gives us a second point on the ray, namely $(-4, 1)$. Plot these two points, then draw the ray starting at $(-3, 0)$ and passing through $(-4, 1)$ as it moves to the left, as shown in (a) below. Note that the point at $(-3, 0)$ is empty, because $f(x) = -x - 3$ only if $x < -3$.

The second part of the function is $f(x) = x + 3$, but only for $x \geq -3$. Hence, this is a ray, starting at the point where $x = -3$ and moving to the right. At $x = -3$, $f(-3) = (-3) + 3 = 0$, so the starting point of the ray is at $(-3, 0)$. We have already found that $f(0) = 3$, so this gives us a second point on the ray, namely $(0, 3)$. Plot these two points, then draw the ray starting at $(-3, 0)$ and passing through $(0, 3)$ as it moves to the right, as shown in (b) below. Note that the point at $(-3, 0)$ is filled, because $f(x) = x + 3$ if $x \geq -3$.

Finally, put these two pieces together to form the graph of f shown in (c) below.

The domain of f is the set of all real numbers. The range of f is $\{y : y \geq 0\}$.

Version: Fall 2007
19. We’re given the following piecewise definition.

\[g(x) = \begin{cases}
-2x + 3, & \text{if } x < 3/2, \\
2x - 3, & \text{if } x \geq 3/2,
\end{cases} \]

Note that \(0 < 3/2\), so to evaluate \(g(0)\), we should substitute into the first piece of this function, namely

\[g(x) = -2x + 3 \]
\[g(0) = -2(0) + 3 \]
\[g(0) = 3. \] (2)

Note that \(3 \geq 3/2\), so to evaluate \(g(3)\), we should substitute into the second piece of this function, namely

\[g(x) = 2x - 3 \]
\[g(3) = 2(3) - 3 \]
\[g(3) = 3. \]

The first part of the function is \(g(x) = -2x + 3\), but only for \(x < 3/2\). Hence, this is a ray, starting at the point where \(x = 3/2\) and moving to the left. At \(x = 3/2\),
\[g(3/2) = -2(3/2) + 3 = 0, \] so the starting point of the ray is at \((3/2,0)\). We have already found that \(g(0) = 3\), so this gives us a second point on the ray, namely \((0,3)\). Plot these two points, then draw the ray starting at \((3/2,0)\) and passing through \((3,0)\) as it moves to the left, as shown in (a) below. Note that the point at \((3/2,0)\) is empty, because \(g(x) = -2x + 3\) only if \(x < 3/2\).

The second part of the function is \(g(x) = 2x - 3\), but only for \(x \geq 3/2\). Hence, this is a ray, starting at the point where \(x = 3/2\) and moving to the right. At \(x = 3/2\),
\[g(3/2) = 2(3/2) - 3 = 0, \] so the starting point of the ray is at \((3/2,0)\). We have already found that \(g(3) = 3\), so this gives us a second point on the ray, namely \((3,3)\). Plot these two points, then draw the ray starting at \((-3,0)\) and passing through \((3,3)\) as it moves to the right, as shown in (b) below. Note that the point at \((3/2,0)\) is filled, because \(g(x) = 2x - 3\) for \(x \geq 3/2\).

Finally, put these two pieces together to form the graph of \(g\) shown in (c) below.
The domain of g is the set of all real numbers. The range of g is $\{y : y \geq 0\}$.

21. Three facts lead to the development of the piecewise function and its graph.

- Before time $t = 0$, the switch is open and the voltage is zero. That is, $V(t) = 0$ if $t < 0$. The graph of this piece is shown in (a) below.
- At time $t = 0$ the switch is closed and remains closed until time $t = 2$ when it is again opened. During this time, the voltage is a constant 3 volts. That is, $V(t) = 3$ for $0 \leq t < 2$. The graph of this piece is shown in (b) below.
- Finally, at time $t = 2$ and thereafter, the switch remains open and the voltage is zero. That is, $V(t) = 0$ for $t \geq 2$. The graph of this piece is shown in (c).

Putting the pieces together that are described above gives the following piecewise definition.

$$V(t) = \begin{cases}
0, & \text{if } t < 0, \\
3, & \text{if } 0 \leq t < 2, \\
0, & \text{if } t \geq 2.
\end{cases}$$

The complete graph of V follows.